The user manual

product:

HqMaskEdit ActiveX control version 1.0.0.2

Table of contents

1. Product review

1.1 The distribution kit maintenance

2. Product installation

2.1 Trial version

2.2 License version

2.3 Integration into Microsoft Visual Studio 2005

2.4 Product removal

2.5 Distribution as a part of user prorgams

3. Product usage

3.1 Properties

3.2 Methods

3.3 Events

3.4 Messages

3.5 Using in Microsoft Visual Studio 2005

4. Rules (mask) for limitation and formatting of the input

4.1 Base rules (built in) (masks)

4.2 Creation of the new rules (masks)

5. System requirements

6. Contacts

1. Product review

The "HqMaskEdit ActiveX Control" (further "product", "unit", "control" or "HqMaskEdit") is intended for input and mapping of the character information into the user application. "HqMaskEdit" represents a rectangular window (further "input field" or "edit box"), built in the application of the user and intended for text entering (look figure 1). The product expands functionality of the standart windows-control "edit box." The functionality extension is the possibility of limitation (masking, filter) and formatting of the information entered into the edit box. The special technology allowing simply and effectively to describe every possible masks for limitation and formatting of the entered information is developed. The product is realised with "ATL" library usage, therefore has minimal requirements to memory and system speed. "HqMaskEdit" can be used in any programming language supporting "ActiveX" technology, among them "C#", "VisualBasic", "VisualC++", "Delphi", "Borland Builder C ++".

__

[image: image1.png]192 . 168 . 123 . 111

Figure 1. a) General view of the product.

 In this case a rule of formatting of

input (mask) resolves only input of

IP-addresses.

1.2 The distribution kit maintenance

1. "HqCollection.dll"

"Dll" library, product executable module.

2. "HqCollectionLicense.lic"

The license for the product, contains the product license (activation) key.

3. "HqMaskEdit.h", "HqMaskEdit.cpp"

Example of the class importing functionality of the product from "dll" library. It is
intended for usage in the user programs.

4. "Manual.rtf"

The user manual.

5. "ActivateProduct.exe"

The utility intended for activation of the product. There you need to enter the
activation (license) key.

2. Product installation

To install the product you need to fulfil following operations:

1. Unpack the distribution kit archive "HqCollection.rar" in any folder, for example, on the desktop.

2. Open this folder and execute the "setup.exe" file.

3. Follow instructions of the installation program.

After successful installation of the product in the list of programs, installed on your computer ("start"->"all programs") you will find a folder "JASost", and in it "HqCollection" and further "HqMaskEdit" ("JASoft"->"HqCollection"->"HqMaskEdit").

To distribute the product as a part of user programs, there is a possibility to avoid the given installation procedure (look section 2.5 "Distribution as a part of user prorgams").

For removal of the product from your system you need to open "control panel", then "Add/Remove Programs" then find "HqCollection" and select "delete".

2.1 Trial version

The trial version is intended that the user could try all functionality of the product before purchase. The trial version of the product is accessible free of charge and does not require activation.

The trial version of the product is full-function and gives access to all possibilities of the product. A distinctive feature of the trial version of the product is the inscription "trial ver" by black color on a yellow background (look figure 2).

__

[image: image2.png]

Figure 2. General view of the product

in the trial version

__

2.2. License version

The license version of the product is intended for usage in user programs without any limitations. The general view of the product in the license version is presented in a figure 1. The given version of the product is paid. After payment for the product there are some ways of reception of the license version of the product.

1. If you have received at once the distribution kit with the licensed version of the product you need to simply fulfil procedure of installation of the product (look section 2).

2. If you have received only an activation (licene) key for the product you need to fulfil following operations:

· From the site "http://hqsoft.narod.ru/index_eng.html" download and install the trial version of the product.

· In the list of programs, installed on your computer ("stat"->"all programs"), select the activation of "HqCollection" ("JASoft"->"HqCollection"->"Product activation") item.

· In the "Enter the activation key" field enter the received activation (license) key.

· If you have correctly entered the activation key, in the "Product:" field you will see the name of an activated product ("HqMaskEdit"), and also button "Activate" becomes enabled. Then you need to press the "Activate" button.

· In case of successful activation of the product you will see the appropriate message; activation may not pass, if customisations of safety of the current user prohibit to write in the register.

2.3 Integration into Microsoft Visual Studio

Integration is possible only after product installation (look section 2). Because the product base on "ActiveX" technology, it can be used in any programming languages supporting given technology. We will consider integration of the product into "Microsoft Visual Studio 2005".

1. Run "Visual Studio".

2. Select the "Create project" item and follow instructions of the wizard, or open the existing project.

3. After the project has been created, switch to design mode.

4. Select the "Toolbox" tab.

5. On this tab you need to find group in which you will add the product or create a new group ("Add tab"), having selected the appropriate item after right mouse button click.

6. Click rigth mouse button and select "Choose items" item.

7. In the shown "Choose toolbox items" window, select the "Com Components" tab.

8. In the list of accessible components find "HqMaskEdit Class" and flag it.

9. Press the "OK" button.

10. After that, in the selected group on the "Toolbox" tab there will be "HqMaskEdit" component.

11. Select it and drag it on the form.

If you have selected a project in "C++" language you don`t need to add the product on the "Toolbox" tab. Instead it is possible to load or create the a project, than switch to design mode, select the form on which you wish to place the product, than press the right mouse button, then select "Insert ActiveX Control" item and seletct from the list "HqMaskEdit".

2.4 Product removal

It is necessary to remember that after the product removal, all programs, using it will not work correctly. For product removal you need to fulfil following operations.

1. Open "Control panel" from "Windows" operating system.

2. Select "Add/remove programs".

3. In the list of installed programs select "HqCollection" item.

4. On the right, at the end of selected item, press "Delete".

2.5 Distribution as a part of user programs

The "HqMaskEdit" is intended for usage as a part of user programs. If the user wants to use the own program on another computer (to distribute a program) on the given computer it is necessary to install "HqMaskEdit" also. For installation of "HqMaskEdit" it is possible to take advantage of the installation program, however there are situations when it is unacceptable.

There is a possibility of usage "HqMaskEdit" without execute of the installation program. For this purpose you need to fulfil following operations.

1. Copy the "HqCollection.dll" file into any folder; we will name it "folder". Note: to receive the "HqCollection.dll" file it is possible, having started the installation program at least one time on one computer; it is in that folder which you have specified at installation and further in section "\bin".

2. Make the following call: "regsvr32 folder\HqCollection.dll". Note: "regsvr32.exe" it is the standart system program which is the constituent of the "Windows" operating system. "regsvr32" has many additional parameters which you can use also.

If you want to remove "HqMaskEdit", you need to filful following operations.

1. Make the following call: "regsvr32 /u folder\HqCollection.dll". Note: "folder" it is the folder in which you have placed the "HqCollection.dll" file at installation.

2. Now you can delete the "HqCollection.dll" file.

If you wish to use the license version of "HqMaskEdit" as a part of your programs you need to specify a license (activation) key. For this purpose there are two ways:

1. Register usage. For this purpose you need to fulfil following operations:

· In the register, in "HKEY_LOCAL_MACHINE\SOFTWARE" section you need to create the branch "Jablokov Alexandr\HqCollection\".

· In the register branch, "HKEY_LOCAL_MACHINE\SOFTWARE\Jablokov Alexandr\HqCollection\", you need to create key-string with the name "HqMaskEdit" and the value, corresponding to the license (activation) key.

2. Usage of an additional file. For this purpose you need to fulfil following operations:

· Create a file with the name "HqCollectionLicense.lic". Note: the file size should not exceed 512 bytes.

· In the "HqCollectionLicense.lic" file, you need to add string: "HqMaskEdit = [activation key]>", where "[activation key]" it is activation (license) key.

· Place the "HqCollectionLicense.lic" file in a folder with an executable file of your program because the product checks of this file before start in a current folder.

3. Product usage

The "HqMaskEdit ActiveX Control" is intended for input and mapping of the character information to the user application. "HqMaskEdit" represents a rectangular window built in the application of the user and intended for text entering (look figure 1). The product gives set of properties and methods intended for manipulations with the entered information, and also for change of the appearance.

Notes:

1. Further words "unit" and "control", "edit box" is understood as "HqMaskEdit".

2. "list box" is understood as dropped down list of "HqMaskEdit".

3. "edit contorl" is understood as the edit control of "HqMaskEdit".

4. Descriptions of properties and methods are resulted for usage in "C++" language.

5. Descriptions of properties and methods for any programming language you can receive by means of built in wizard of "VisualStudio 2005".

3.1 Properties

Usually the user customises properties at the design time of the application. However there is a possibility to access to properties at the run time of the application.

1. BackColor;

Background color of the control.

//set background color

void put_BackColor(unsigned long newValue);

//get background color

unsigned long get_BackColor();

2. Font;

Font of the control.

//set font

void put_Font(LPDISPATCH newValue);

//get current font

LPDISPATCH get_Font();

3. ClientEdge;

Specifies that the control has a 3D look — that is, a border with a sunken edge.

//set or reset ClientEdge style

void put_ClientEdge(BOOL newValue);

//check for ClientEdge style

BOOL get_ClientEdge();

4. StaticEdge;

Creates the control with a three-dimensional border style intended to be used for items that do not accept user input.

//set or reset StaticEdge style

void put_StaticEdge(BOOL newValue);

//check for StaticEdge style

BOOL get_StaticEdge();

5. Border;

Creates a window that has a thin-line border.

//set or reset Border style

void put_Border(BOOL newValue);

//check for Border style

BOOL get_Border();

6. Transparent;

Specifies that the control created with this style is to be transparent. That is, any windows that are beneath the window are not obscured by the window. A window created with this style receives "WM_PAINT" messages only after all sibling windows beneath it have been updated.

//set or reset Transparent style

void put_Transparent(BOOL newValue);

//check for Transparent style

BOOL get_Transparent();

7. ModalFrame;

Designates the control with a double border.

//set or clear ModalFrame style

void put_ModalFrame(BOOL newValue);

//check for ModalFrame stle

BOOL get_ModalFrame();

8. AutoHScroll;

Automatically scrolls text to the right by 10 characters when the user types a character at the end of the line. When the user presses the ENTER key, the control scrolls all text back to position zero.

//set or reset AutoHScroll style

void put_AutoHScroll(BOOL newValue);

//check for AutoHScroll style

BOOL get_AutoHScroll();

9. AutoVScroll;

Automatically scrolls text up one page when the user presses the ENTER key on the last line.

//set or reset AutoVScroll style

void put_AutoVScroll(BOOL newValue);

//check for AutoHScroll style

BOOL get_AutoVScroll();

10. TextAlign;

Sets text justification in the input field. Three variants are possible:

· Left (ES_LEFT = 0).

· Center (ES_CENTER = 1).

· Right (ES_RIGHT = 2).

//set text justification

void TextAlign(unsigned long newValue);

//get text justification

unsigned long get_TextAlign();

11. Rule;

Sets a rule (mask) on which the information entered by the user to the edit control will be limited or formatted. More detailed information about the rules look in the section 4 of the present user manual. By default input is not limited.

//set rule

void put_Rule(LPCTSTR newValue);

//get rule

CString get_Rule();

12. FontColor;

Sets a text color of the edit control in the RGB format.

//set text color

void put_FontColor(unsigned long newValue);

//get text colot

unsigned long get_FontColor();

13. UserData;

The user can use this property at own discretion.

//set UserData

void put_UserData(unsigned long newValue);

//get UserData

unsigned long get_UserData();

14. AcceptFiles;

Specifies that a control created with this style accepts drag-and-drop files.

//set or reset AcceptFiles style

void put_AcceptFiles(BOOL newValue);

//check for AcceptFiles style

BOOL get_AcceptFiles();

15. LeftScrollBar;

Places a vertical scroll bar to the left of the client area.

//set or reset LeftScrollBar style

void put_LeftScrollbar(BOOL newValue);

//chek for LeftScrollBar style

BOOL get_LeftScrollbar();

16. Lowercase;

Converts all characters to lowercase as they are typed into the edit control.

//set or reset Lowercase style

void put_Lowercase(BOOL newValue);

//check for Lowercase style

BOOL get_Lowercase();

17. RightAlignText;

Right aligns text in a single-line or multiline edit control.

//установить/сбросить стиль RightAlignText

void put_RightAlignText(BOOL newValue);

//получить установлен ли стиль RightAlignText

BOOL get_RightAlignText();

18. RightToLeftReadingOrder;

Displays the window text using right-to-left reading order properties.

//set or reset RightToLeftReadingOrder style

void put_RightToLeftReadingOrder(BOOL newValue);

//check for RightToLeftReadingOrder style

BOOL get_RightToLeftReadingOrder();

19. Uppercase;

Converts all characters to uppercase as they are typed into the edit control.

//set or reset Uppercase style

void put_Uppercase(BOOL newValue);

//check for Uppercase style

BOOL get_Uppercase();

20. Multiline;

Designates a multiline edit control. The default is single-line edit control.

When the multiline edit control is in a dialog box, the default response to pressing the ENTER key is to activate the default button. To use the ENTER key as a carriage return, use the WantReturn() style.

When the multiline edit control is not in a dialog box and the AutoVScroll() style is
specified, the edit control shows as many lines as possible and scrolls vertically
when the user presses the ENTER key. If you do not specify AutoVSctoll(), the edit
control shows as many lines as possible and beeps if the user presses the ENTER key
when no more lines can be displayed.

If you specify the AutoVScroll() style, the multiline edit control automatically
scrolls horizontally when the caret goes past the right edge of the control. To start
a new line, the user must press the ENTER key. If you do not specify AutoVSctoll(),
the control automatically wraps words to the beginning of the next line when
necessary. A new line is also started if the user presses the ENTER key. The window
size determines the position of the Wordwrap. If the window size changes, the
Wordwrapping position changes and the text is redisplayed.

Multiline edit controls can have scroll bars. An edit control with scroll bars
processes its own scroll bar messages. Note that edit controls without scroll bars
scroll as described in the previous paragraphs and process any scroll messages sent by
the parent window.

//set or reset Multiline style

void put_Multiline(BOOL newValue);

//check for Multiline style

BOOL get_Multiline();

21. NoHideSelection;

Negates the default behavior for an edit control. The default behavior hides the selection when the control loses the input focus and inverts the selection when the control receives the input focus. If you specify NoHideSelection(), the selected text is inverted, even if the control does not have the focus.

//set or reset NoHideSelection style

void put_NoHideSelection(BOOL newValue);

//check for NoHideSelection style

BOOL get_NoHideSelection();

22. OemConvert;

Converts text entered in the edit control. The text is converted from the Windows character set to the OEM character set and then back to the Windows character set. This ensures proper character conversion when the application calls the CharToOem function to convert a Windows string in the edit control to OEM characters. This style is most useful for edit controls that contain file names that will be used on file systems that do not support Unicode.

//set or reset OemConvert style

void put_OemConvert(BOOL newValue);

//check for OemConvert style

BOOL get_OemConvert();

23. Password;

Displays an asterisk (*) for each character typed into the edit control. This style is valid only for single-line edit controls.

//set or reset Password style

void put_Password(BOOL newValue);

//check for Password style

BOOL get_Password();

24. VerticalScrollBar;

Creates a window that has a vertical scroll bar.

//set or reset VerticalScrollBar style

void put_VerticalScrollbar(BOOL newValue);

//check for VerticalScrollBar style

BOOL get_VerticalScrollbar();

25. ReadOnly;

Prevents the user from typing or editing text in the edit control.

//set or reset ReadOnly style

void put_ReadOnly(BOOL newValue);

//check for ReadOnly style

BOOL get_ReadOnly();

26. WantReturn;

Specifies that a carriage return be inserted when the user presses the ENTER key while entering text into a multiline edit control in a dialog box. If you do not specify this style, pressing the ENTER key has the same effect as pressing the dialog box's default push button. This style has no effect on a single-line edit control.

//set or reset WantReturn style

void put_WantReturn(BOOL newValue);

//check for WantReturn style

BOOL get_WantReturn();

3.2 Methods

1. CString GetText();

Returns the current text which is in the edit control.

 Returned value CString:

· the text which is in the edit control

2. void PutText(LPCTSTR wstrNew);

Puts the text to the edit control if it does not contradict with a rule (mask) set by property "Rule".

 Perameters:

· wstrNew - the text which will be putted to the edit control

3. BOOL CheckRule();

Validation of the rule (mask).

 Returned value BOOL:

· TRUE (1) - if the rule is set truly

· FALSE (0) - if the rule is set incorrectly

4. void ClearText(long lBeg, long lEnd);

Makes text cleaning if it does not contradict with a rule (mask) set by property "Rule".

 Parameters:

· lBeg - position of the first cleared character in the text

· lEnd - position of the last cleared character in the text; if lEnd =-1 it means
 the last character of the text

5. BOOL InsertChar(unsigned short wch, long lPos);

Inserts the character into a text if it does not contradict with a rule (mask) set by property "Rule". The character is set in the wide char format (wchar_t).

 Parameters:

· wch - two-byte code of the inserted character

· lPos - position of the character inserted into the text

 Returned value BOOL:

· TRUE (1) - if the insert is fulfilled

· FALSE (0) - if the insert is not fulfilled

6. BOOL ReplaceChar(unsigned short wch, long lPos);

Substitutes the character in the text if it does not contradict a rule (mask) set by property "Rule". The character is set in the wide char format (wchar_t).

 Parameters:

· wch - two-byte code of the character

· lPos - position in text

 Returned value BOOL:

· TRUE (1) - if the character has been substituted

· FALSE (0) - if the character has not been substituted

7. BOOL DeleteChar(long lPos);

Deletes the character in the text if it does not contradict a rule (mask) set by property "Rule".

 Parameters:

· lPos
- position of the deleted character in the text

 Returned value BOOL:

· TRUE (1) - if removal is fulfilled

· FALSE (0) - if removal is not fulfilled

8. BOOL IsCharEnabled(unsigned short wch, long lPos);

Checks possibility of replacement of the character in the edit control to the other character, in correspondence with a rule (mask), set by property "Rule". The character is set in the wide char format (wchar_t).

 Parameters:

· wch - two-byte code of the character

· lPos - position of the character in the text

 Returned value BOOL:

· TRUE (1) - if replacement is possible

· FALSE (0) - if replacement is impossible

9. BOOL CanUndo();

Determines whether an edit-control operation can be undone.

 Returned value BOOL:

· TRUE (1) - if the last edit operation can be undone

· FALSE (0) - if it cannot be undone

10. long CharFromPos(long x, long y);

Retrieves the line and character indices for the character closest to a specified position.

 Parameters:

· x - horizontal coordinate of the point

· lPos — vertical coordinate of the point

 Returned value long:

· младшее слово - character index

· старшее слово — line index

13. long GetCueBanner(LPCTSTR lpwText, long cchText);

Retrieves the text that is displayed as the text cue, or tip, in an edit control when the control is empty and does not have focus.

 Parameters:

· lpwText - pointer to a string containing the cue text

· cchText — the number of characters that can be received for the cue text

 Returned value BOOL:

· !=0 – if successful

· =0 - if there was an error

12. long GetFirstVisibleLine();

Determines the topmost visible line in an edit control.

 Returned value long:

· zero-based index of the topmost visible line

13. long* GetHandle();

Retrieves a handle to the memory currently allocated for a multiple-line edit control. The handle is a local memory handle and may be used by any of the Local Windows memory functions that take a local memory handle as a parameter. GetHandle is processed only by multiple-line edit controls.

 Returned value (long*):

· !=0 – if the handle exists

14. long GetLimitText();

Gets the maximum amount of text this edit box can contain.

 Returned value long:

· the current text limit, in bytes

15. long GetLine(long nIndex, LPCTSTR lpszBuffer, long nMaxLength);

Retrieves a line of text from an edit control.

 Parameters:

· nIndex - specifies the line number to retrieve from a multiple-line edit

 control. Line numbers are zero-based; a value of 0 specifies the

 first line; this parameter is ignored by a single-line edit

 control

· lpszBuffer – points to the buffer that receives a copy of the line; the first

 word of the buffer must specify the maximum number of bytes that

 can be copied to the buffer

· nMaxLength - specifies the maximum number of bytes that can be copied to the

 buffer; GetLine places this value in the first word of lpszBuffer

 before making the call to Windows

 Returned value long:

· the number of bytes actually copied; the return value is 0 if the line number specified by nIndex is greater than the number of lines in the edit control

16. long GetLineCount();

Retrieves the number of lines in a multiple-line edit control. Call this function to retrieve the number of lines in a multiple-line edit control.

 Returned value long:

· >=0 - the number of lines in the multiple-line edit control

· -1 - if no text has been entered into the edit control

17. long GetMargins();

Gets the left and right margins for this control.

 Returned value long:

· младшее слово - the width of the left margin

· старшее слово - the width of the right margin

18. unsigned short GetPasswordChar();

Retrieves the password character displayed in an edit control when the user enters text if the edit control has the Password style.

 Returned value unsigned short:

· !=0 - the character to be displayed in place of the character typed by the user

· 0 - if no password character exists

19. void GetRect(long* pRect);

Gets the formatting rectangle of an edit control.

 Parameters:

· pRect – points to the RECT structure that receives the formatting rectangle

 Additional information:

· typedef struct tagRECT

{

LONG left;

LONG top;

LONG right;

LONG bottom;

} RECT;

20. long GetSel(long* pSelBeg, long* pSelEnd);

Gets the starting and ending character positions of the current selection in an edit control.

 Parameters:

· pSelBeg - reference to an integer that will receive the position of the first
 character in the current selection

· pSelEnd - reference to an integer that will receive the position of the first
 nonselected character past the end of the current selection

 Returned value long:

· LOW WORD – contains the starting position

· HIGH WORD - position of the first nonselected character after the end of the

 selection

21. BOOL PosFromChar(unsigned long nChar, long* px, long* py);

Retrieves the coordinates of the upper-left corner of a specified character index.

 Parameters:

· nChar - zero-based index of the specified character

· px
 - reference to an integer that will receive the horizontal coordinate

· py
 - reference to an integer that wiil receive the vertical coordinate

 Returned value BOOL:

· FALSE (0) – if there was an error

· TRUE (1) - if successful

22. BOOL SetCueBanner(LPCTSTR lpсwText);

Sets the text that is displayed as the text cue, or tip, in an edit control when the control is empty and does not have focus.

 Parameters:

· lpwText - pointer to a string containing the text cue to display in the edit box

 Returned value BOOL:

· TRUE (1) – if the cue text is set successfully

· FALSE (0) — if there was an error

23. void SetHandle(long *pHandle);

Call this function to set the handle to the local memory that will be used by a multiple-line edit control.

 Parameters:

· pHandle - contains a handle to the local memory; this handle must have been

 created by a previous call to the LocalAlloc Windows function using
 the LMEM_MOVEABLE flag; the memory is assumed to contain a null-

 terminated string; if this is not the case, the first byte of the

 allocated memory should be set to 0.

24. long SetLimitText(unsigned long nMax);

Sets the maximum amount of text this edit control can contain.

 Parameters:

· nMax - the new text limit, in characters.

25. void SetMargins(unsigned long nLeft, unsigned long nRight);

Sets the left and right margins for this edit control.

 Parameters:

· nLeft - the width of the new left margin, in pixels

· nRight - the width of the new right margin, in pixels

26. void SetModify(BOOL bModified);

Sets or clears the modification flag for an edit control.

 Parameters:

· bModified – a value of TRUE (1) indicates that the text has been modified, and a

value of FALSE (0) indicates it is unmodified; by default, the

modified flag is set

27. void EmptyUndoBuffer();

Resets (clears) the undo flag of an edit control. The edit control will now be unable to undo the last operation. The undo flag is set whenever an operation within the edit control can be undone.

28. BOOL FmtLines(BOOL bAddEOL);

Sets the inclusion of soft line-break characters on or off within a multiple-line edit control. FmtLines only affects the buffer returned by GetHandle() and the text returned by WM_GETTEXT. It has no impact on the display of the text within the edit control.

 Parameters:

· bAddEOL – specifies whether soft line-break characters are to be inserted; a

 value of TRUE (1) inserts the characters; a value of FALSE (0) removes
 them

Returned value BOOL:

· !=0 – if any formatting occurs

· =0 - otherwise

29. void LimitText(long nChars);

Limits the length of the text that the user may enter into an edit control.

 Parameters:

· nChars – specifies the length (in bytes) of the text that the user can enter; if
 this parameter is 0, the text length is set to UINT_MAX bytes; this is
 the default behavior

30. long LineFromChar(long nIndex);

Retrieves the line number of the line that contains the specified character index.

 Parameters:

· nIndex – contains the zero-based index value for the desired character in the
 text of the edit control, or contains –1; if nIndex is –1, it specifies
 the current line, that is, the line that contains the caret

Returned value long:

· zero-based line number of the line containing the character index specified by nIndex

31. long LineLength(long nLine);

Retrieves the length of a line in an edit control.

 Parameters:

· nLine – specifies the character index of a character in the line whose length is
 to be retrieved; if this parameter is –1, the length of the current line
 (the line that contains the caret) is returned, not including the length
 of any selected text within the line; when LineLength is called for a
 single-line edit control, this parameter is ignored

Returned value long:

· when LineLength is called for a multiple-line edit control, the return value is the length (in bytes) of the line specified by nLine; when LineLength is called for a single-line edit control, the return value is the length (in bytes) of the text in the edit control

32. void LineScroll(long nLines, long nChars);

Scrolls the text of a multiple-line edit control.

 Parameters:

· nLines – specifies the number of lines to scroll vertically

· nChars – specifies the number of character positions to scroll horizontally;

 this value is ignored if the edit control has either the ES_RIGHT or
 ES_CENTER style

33. void ReplaceSel(LPCTSTR lpszNewText, BOOL bCanUndo);

Replaces the current selection in an edit control with the specified text if it does not contradict a rule (mask) set by property "Rule".

 Parameters:

· lpszNewText – points to a null-terminated string containing the replacement

 text

· bCanUndo - to specify that this function can be undone, set the value of this

 parameter to TRUE (1); tThe default value is FALSE (0)

34. void SetReadOnly(BOOL bReadOnly);

Sets the read-only state of an edit control.

 Parameters:

· bReadOnly – specifies whether to set or remove the read-only state of the edit

control; a value of TRUE (1) sets the state to read-only; a value of

FALSE (0) sets the state to read/write

35. void SetPasswordChar(unsigned short ch);

Sets or removes a password character displayed in an edit control when the user enters text.

 Parameters:

· ch - specifies the character to be displayed in place of the character typed by
the user; if ch is 0, the actual characters typed by the user are
displayed

36. void SetRect(long* pRect);

Sets the formatting rectangle of a multiple-line edit control and updates the control.

 Parameters:

· pRect – points to the RECT structure object that specifies the new

 dimensions of the formatting rectangle

 Additional information:

· typedef struct tagRECT

{

LONG left;

LONG top;

LONG right;

LONG bottom;

} RECT;

37. void SetRectNP(long* pRect);

Sets the formatting rectangle of a multiple-line edit control without redrawing the control window.

 Parameters:

· pRect – points to a RECT structure object that specifies the new dimensions of
 the rectangle

 Additional information:

· typedef struct tagRECT

{

LONG left;

LONG top;

LONG right;

LONG bottom;

} RECT;

38. void SetSel(long nFirstChar, long nLastChar);

Selects a range of characters in an edit control.

 Parameters:

· nFirstChar - specifies the starting position; if nStartChar is 0 and nEndChar is

 –1, all the text in the edit control is selected; if nStartChar is

 –1, any current selection is removed

· nLastChar - specifies the ending position

39. void Clear();

Deletes (clears) the current selection (if any) in the edit control if it does not contradict a rule (mask) set by property "Rule".

40. void Copy();

Copies the current selection (if any) in the edit control to the Clipboard in CF_TEXT format.

41. void Cut();

Deletes (cuts) the current selection (if any) in the edit control and copies the deleted text to the Clipboard in CF_TEXT format if it does not contradict a rule (mask) set by property "Rule".

42. void Paste();

Inserts the data from the Clipboard into the edit control at the current cursor position. Data is inserted only if the Clipboard contains data in CF_TEXT format.

3.3 Events

For tracing a state of the product the user can use following events.

1. OnAlignRTL();

Is called when the user has changed the edit control direction to right-to-left.

2. OnAlignLTR();

Is called when the user has changed the edit control direction to left-to-right.

3. OnHScroll();

This event is fired for the following mouse events on the horizontal scroll bar:
clicking either arrow button or clicking between the arrow button and the thumb.
However, the message is not sent when clicking the scroll bar thumb itself. The
message is also sent when a keyboard event causes a change in the view area of the
edit control, for example, pressing HOME, END, LEFT ARROW, or RIGHT ARROW.

4. OnVScroll();

This event is fired for the following mouse events on the vertical scroll bar:
clicking either arrow button or clicking between the arrow button and the thumb.
However, the message is not sent when clicking the scroll bar mouse itself. The
message is also sent when a keyboard event causes a change in the view area of the
edit control, for example, pressing HOME, END, PAGE UP, PAGE DOWN, UP ARROW, or DOWN
ARROW.

5. OnChange();

Event is fired when the user has taken an action that may have altered text in an edit
control.

6. OnUpdate();

Event is fired when an edit control is about to redraw itself.

7. OnErrSpace();

The combo box cannot allocate enough memory to meet a specific request.

8. OnFailChar(short wFailChar, LONG lPos);

It is called at attempt of input of the character prohibited by a rule (mask).

 Parameters:

· wFailChar - two-byte code of the character

· lPos - zero based position of the character

8. OnKillFocus();

The control is losing the input focus.

9. OnMaxText();

Event is fired when the current text insertion has exceeded the specified number of characters for the edit control. The text insertion has been truncated. This event is also fired when an edit control does not have the AutoHScroll style and the number of characters to be inserted would exceed the width of the edit control. This event is also fired when an edit control does not have the AutoVScroll style and the total number of lines resulting from a text insertion would exceed the height of the edit control.

12. OnSetFocus();

The event is fired when an edit control receives the keyboard focus.

3.4 Сообщения

For handle and customisation of the product you can use the mechanism of window messages. The product supports reception and processing of following messages.

1. EM_CANUNDO

2. EM_CHARFROMPOS

3. EM_EMPTYUNDOBUFFER

4. EM_FMTLINES

5. EM_GETCUEBANNER

6. EM_GETFIRSTVISIBLELINE

7. EM_GETHANDLE

8. EM_GETLIMITTEXT

9. EM_GETLINE

10. EM_GETLINECOUNT

11. EM_GETMARGINS

12. EM_GETMODIFY

13. EM_GETPASSWORDCHAR

14. EM_GETRECT

15. EM_GETSEL

16. EM_GETTHUMB

17. EM_LIMITTEXT

18. EM_LINEFROMCHAR

19. EM_LINEINDEX

20. EM_LINELENGTH

21. EM_LINESCROLL

22. EM_POSFROMCHAR

23. EM_REPLACESEL

24. EM_SCROLL

25. EM_SCROLLCARET

26. EM_SETCUEBANNER

27. EM_SETHANDLE

28. EM_SETIMESTATUS

29. EM_SETLIMITTEXT

30. EM_SETMARGINS

31. EM_SETMODIFY

32. EM_SETPASSWORDCHAR

33. EM_SETREADONLY

34. EM_SETRECT

35. EM_SETRECTNP

36. EM_SETSEL

37. EM_SETTABSTOPS

38. EM_SETWORDBREAKPROC

39. EM_SHOWBALLOONTIP

40. EM_UNDO

For sending of messages in "C++" language function "SendMessage (HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)" is usually used. The description of all these messages corresponds to the messages processed by a standard windows-control combo box.

3.5 Using in Microsoft VisualSudio 2005

For usage of the given product in "VisualStudio", it is necessary to switch to design mode, to select the form on which you plan to place the product and to integrate it on this form (look section 2.3). After you have placed the product on the form, click on it by the left mouse button to select it. Further open the "Properties" tab which provides access to all properties and events of the product, and change properties as it is necessary for you. If you use "C++" language changes of properties will be visible only after compilation and start of your program.

If you wish to get access to properties and methods of the product at run-time you can take advantage of preparation "HqMaskEdit.h", "HqMaskEdit.cpp", entering into the distribution kit or by means of the wizard to add a variable ("Add variable"), corresponding to the product. To add such variable, make the following.

1. Switch to design mode and left click under the product map to select it.

2. Right-click on the product map and select the "Add variable" item.

3. Put the "Control" tick and enter a variable name.

4. Press "OK".

4. Rules (mask) for limitation and formatting of the input

The product represents original technology of creation of rules (masks) for formatting and limitation an input. The given technology allows to effectively create of various rules (mask) with the help of "base rules" (built in) (look section 4.1), and also on a basis of the earlier created rules, recursively. Rules (mask) are set by property "Rule" (look section 3.1) of the product. They set limitations and formatting of the entered character information. The rule "TT=EN (all | all);" is set by default, which resolves input of any characters in any positions of string of input field. We will consider a technique of the rules (masks) creation.

4.1 Base rules (built in) (masks)

Base rules are a basis for creation of new rules (look section 4.2). The product has 6 base rules:

1. EN('s1', 's2',.., 's3', 's4',....... | p1, p2, p3,.., p4,.......)

Sets the resolved or prohibited characters in certain positions. The quantity of
characters and possible variants of positions is not limited.

 Parameters and separators:

· [,]

 - listing of characters (and also ranges of characters) or

 positions (and also ranges of positions) depending on a context

 (see the information on the separator [|] further).

· ['s']

 - specifies the "s" character

· [p]

 - specifies the zero based position "p"

· ['s1',..,'s2'] — specifies range of characters from "s1" to "s2" inclusive

· [p1,..,p2]
 - specifies range of positions from "p1" to "p2" inclusive

· [|]

 - specifies that listing of characters is completed and positions

 will be described further

 Notes:

· Instead of the list of characters (and also ranges of characters) ('s1', 's2',.., 's3', 's4',.......) it is possible to use following command words:

· nil - specifies that input of all characters will be prohibited in the

 positions defined after the separator [|] (see above); in this case it
 will be impossible to set the cursor to these positions

· all - specifies that in the positions defined after the separator [|] (see
 above), input of any characters will be resolved

· Instead of the list of positions (and also ranges of positions) (p1, p2, p3,.., p4,.......) it is possible to use following command words:

· all - specifies that the characters defined before the separator [|], will be
 resolved in all positions of string

Example 1.

To resolve only lower case characters in all positions of string.

Decision:

 EN('a',..,'z' | all)

Example 2.

To resolve lower case letters, digit '0' and digits from '4' to '8' in the positions '3', '4' and in the positions form '8' to '12'.

Decision:

 EN('a',..,'z', '0', '4',..,'8' | 3, 4, 8,..,12)

2. ER('s' | p1, p2, p3,..,p4,........)

Defines the default character in the specified positions. This character will be
used in the specified positions at generation of initial value of string and also at
removal by the user of characters in the string, allocated in these positions if the
rule limits the minimum length of string, and the current length of string is equal to
this
minimum length. If any position is not considered by the given function the
default character will be '0'.

 Parameters and separators:

· [,]
 - listing of positions (and also ranges of positions)

· ['s']
 - specifies the "s" character

· [p]
 - specifies the zero based position "p"

· [p1,..,p2] - specifies range of positions from "p1" to "p2" inclusive

· [|]
 - specifies that default character is defined and positions

 will be described further

 Notes:

· Instead of the list of positions (and also ranges of positions) (p1, p2, p3,.., p4,.......) it is possible to use following command words

· all - specifies that the default character defined before the separator [|],
 will be resolved in all positions of string

3. MINL(len)

Specifies minimum allowable length of string. This function prohibits to the user to
delete characters if the current length of string is equal to the minimum length. Also
it influences on generation of initial value of the string which length will be equal
in this case to the specified by this function minimum length.

 Parameters:

· len - minimum allowable length of string

4. MAXL(len)

Specifies maximum allowable length of string. This function prohibits to the user to
add new characters if the length of string is equal to the specified by this function
maximum length.

 Parameters:

· len - maximum allowable length of string

5. MINV(val, base)

Allows to the user user to enter only numbers in the specified numeric base and also
limits minimum allowable value of string represented as number.

 Parameters:

· base — specifies numeric base (2, 8, 10, 16)

· val - minimum allowable value; it is written in the numeric base

 specified by parameter 'base'

6. MAXV(val, base)

Allows to the user user to enter only numbers in the specified numeric base and also
limits maximum allowable value of string represented as number.

 Parameters:

· base — specifies numeric base (2, 8, 10, 16)

· val - maximum allowable value; it is written in the numeric base

 specified by parameter 'base'

4.2 Creation of the new rules (masks)

On the basis of "base rules" (look section 4.1) you can create a new rules. There are three types of rules:

1. SR = BR1, BR2, ..., BRi, ...;

"Simple rule" - this rule which is created on the basis of one or several "base
rules". The "simple rule" summarises (unites) properties of all "base rules" included
in it.

Parameters and separatord:

· SR – any name of the rule

· BRi – "base rule" (look section 4.1), written in correspondence with the syntax

· [=] - the character which should follow the rule name

· [,] - the character separating "base rules"

· [;] - the character which should be at the end of the rule description

Example 3.

The rule resolving to input only of integers in the decimal numeric system which not exceeding value 255; also the length of string should not exceed 3 characters, because otherwise it is possible to enter unlimited number of zeros that it is not necessary for us.

Notes:

· The given rule will be "simple" as we will construct it on the basis of "base rules"

Decision:

1. R1 = MAXV(255, 10), MAXL(3);

Comments:

· R1

 The name of the new rule.

· MAXV(255, 10)

We limit input only to integers in a decimal numeric system not exceeding value 255.

· MAXL(3)

 We limit maximum length of string to three characters.

2. HR = UN(R1, R2, ..., Ri, ...);

"Dificult dule" — this rule which is created on the basis of one or several "simple
rules" and-or "difficult rules". It means that you can create a recursive (recurrence,
enclosed) rule. The "difficult rule" summarises (unites) properties of all rules
including into it. In a "difficult rule" it is forbidden to use "base rules".

Parameters and separators:

· HR
 – any name of the rule

· UN
 – the mandatory keyword specifying that the "difficult rule" is

 described

· Ri
 – Name of a "simple rule" or a "difficult rule", which is the

 constituent of the required rule

· [=]
 - the character which should follow the rule name

· [(] and [)] - the mandatory characters concerning to "UN" keyword

· [,]
 - the character separating rules, which is the constituent of the

 required rule

Example 4.

Rule for input IP-address presented in the form of 4 decimal numbers, having maximum value 255 and consisting of maximum 3 characters (for limitation of possibility of input of unlimited quantity of zeros) and divided by uneditable string, " . ", on which it is impossible to put the cursor. Considered string of IP-address we can to present so: "xxx . xxx . xxx".

Decision:

1. R1 = MAXV(255, 10), MAXL(3);

 The given rule provides input of decimal numbers necessary for us.

 Comments:

· look for "Example 3"

2. R2 = EN(nil | all), ER(' ' | 0, 2), ER('.' | 1), MINL(3);

The given rule describes uneditable string, equal to " . ", on which it is

impossible to put the cursor.

Comments:

· R2

 The name of the rule.

· EN(nil | all)

 We prohibit input of all characters in all positions.

· ER(' ' | 0, 2)

 We specify that the space character is the default character in 0th and in

 2nd positions of string.

· ER('.' | 1)

 We specify that the '.' character is the default character in 1st position of

 string.

· MINL(3)

 We specify that the minimum length of string is equal to 3 characters, it

 will lead to generation of initial string with 3 characters which is the

 default characters.

3. TT = UN(R1, R2, R1, R2, R1, R2, R1);

The given rule describes a required rule which is union of rules "R1" and

"R2".

3. TT

 "Target rule". The given rule is that rule on which basis there will be an input limitation. The "target rule" can be both "simple" or "difficult" with appropriate syntax (look item 1 and 2). Feature of the given rule is that his name should be "TT" (look example 4).

5. System requirements

1. Processor

· Intel Pentium 90MHz

2. Operating system

· WindowsXP

· Windows Vista

· Windows ME/2000

· Windows 98

6. Contacts

· Developer:

Jablokov Alexandr

· Site:

http://hqsoft.narod.ru
· E-mail:

jablokov@live.ru
· Address:

Russia, Saint-Petersburg

· Date:

05.04.2009

28/28

HqMaskEdit ActiveX Contol version 1.0.0.1

